"Chemical Distribution Among Phases"

Module 1: Basic Concepts, Lecture 3

Chemical Fate and Transport in the Environment, 2nd edition. H.F. Hemond and E.J. Fechner-Levy. Academic Press. London. 2000.

1.8 Multiple Phases Present in the Environment

- One medium (water, air, or soil) may contain different phases.
- Atmosphere contains gas, water, and solids.
- Surface water contains gas bubbles and particulates.
- Pollutants become distributed between different phases in each medium.

Examples of Pollutant Phases

- Pure air is an example of a gas phase
- Solid phases include soil grains, solid particles suspended in water or air, plus pure solid chemicals.
- Immiscible liquid (a liquid that doesn't mix freely with water) can form its own nonaqueous phase liquid (NAPL), such as an oil slick on water.
- This chapter considers only equilibrium partitioning, however, the rate of change of partitioning may be an issue for some conditions (such as the loss of volatiles from a spill of crude oil).

1.8.1 Solubility and Vapor Pressure

- Aqueous solubility is the concentration of a chemical dissolved in water when that water is both in contact and at equilibrium with the pure chemical.
- Aqueous solubility is temperature dependent, but does not vary greatly over typical environmental temperatures.
- As an example, TCE (trichloroethene) dissolves in water until an aqueous concentration of about 1,000 mg/L is reached.

- Vapor pressure is defined as the partial pressure of a chemical in a gas phase that is in equilibrium with the pure liquid or solid chemical.
- Temperature is very important when determining vapor pressure.

Hemond and Fechner-Levy 2000, Table 1-3

 A sealed bottle containing both air and pure liquid TCE will develop a partial pressure of TCE of about 0.08 atm at 20°C in the headspace. This corresponds to about 0.0033 mol/L.

Chemical	Molecular weight (greed)*	Density (giter?)*	Solubility (regilized)	Vapor pressure (acm/P	Henry's law constant (ann: miltant?)	Henry's law constant (dimensionless)*	2	Camonarea
Asete will	60.05	1.01						
Aradar 1254	325.069	1.304	13×10+	$1 \times 10^{-\gamma}$	TLX No.	1.2 × 10 ⁻¹	6.7	Pulpeliferinated bightroyl mixture OPCR:
Aracler 1360	371.224	1.57	17×10*	5.3 × 10**	$11 \times 10_{-4}$	$30 \times 10_{-1}$	6.7	Polyabiliarta red Nigheoyf raiscar (PCB)
Arraciae	713.69		324	4×10-W	3 + 32 *	1 = 10-1	3.68	Harbalde
Benares	78.11	0.08	1790	1.29 × 18 ⁻¹	55×10+	3.4 × 80-1	3.13	Canifice constituent
Nete jajanthineure	228.29		23×10**	6.3 × 30 %	5.75 × 10-*	2.6 × 18-4	5.91	Polycyclic aromatic bydrocarlice (PA21)
Bennelalgyrene	292.32		45×10*	2.3 × 10-19	1.38 × 10-*	4.9 × 10-%	6.50	FAR
Carboo serechionter	133.82	1.59	800	0.12	2.3 × 10 ⁻⁴	9.7 × 10 ⁻¹	2.87	
Cillorobenume	112.50	3.33	472	1.6×10^{-1}	3.7×10^{-4}	1.85 × 10-1	1.93	
Chieresterm	119.38	3,489	8000	0.32	4.8 × 32-*	2.0×10^{-1}	1.87*	
e-Creat	108.14		2790*				1.96	
Cycloheane	85.38	0.78	60	0.19	0.38*	7.34	3.44	
1,3-Dicklowellane	95.90	1.18	eriestr	3.0×10^{-6}	\$×32**	3.4 = 10.4	1.79	
1,2-Dichlorontene	95.96	1.28	6529	9.1 × 10 ⁻¹⁴	38.4	+1 = 10.4	1.47	

• The ideal gas law is used to convert the partial pressure to the moles of vapor per unit volume:

$$\frac{n}{V} = \frac{P}{RT}$$

Where n/V is the number of moles of the chemical per unit volume, P is the partial pressure, T is the absolute temperature, and R is the gas constant: (0.082 liter-atm)/(mol-K).

Example Problem 1-12

- A 70 L fuel tank has a 2 ft x 1.5 in D filler pipe. How much fuel is lost if the cap is left off for a day? Assume;
 - Diffusion coefficient of 0.1 cm²/sec
 - Fuel is octane, C_8H_{18} , having a molecular weight of 114
 - Vapor pressure is 0.015 atm at the ambient temperature of 70°F (21°C)
 - The fuel tank is half empty

Headspace octane concentration:

$$\frac{n}{V} = \frac{P}{RT} = \frac{0.015 atm}{0.082 liter \bullet atm/(mol \bullet K) \bullet (21 + 273)K} = 6.2 \times 10^{-4} M$$
With a MW of 114, this concentration corresponds to:

$$6.2 \times 10^{-4} \frac{mol}{L} \bullet 114 \frac{g}{mol} 7.1 \times 10^{-2} \frac{g}{L} \bullet \frac{L}{10^{3} mL} = 7.1 \times 10^{-5} g / cm^{3}$$
The concentration gradient along the filler tube is:

$$\frac{dC}{dX} = \frac{(7.1 \times 10^{-5} g / cm^{3} - 0g / cm^{3})}{(2 ft \bullet 30.48 cm / ft)} = 1.2 \times 10^{-6} g / cm^{4}$$

Fick's first law used to estimate flux density of octane:

$$J = -D \bullet \frac{dC}{dx} = 0.1 \frac{cm^2}{\sec} \bullet 1.2x 10^{-6} \frac{g}{cm^4}$$

The rate of fuel loss is the flux density multiplied by the cross-sectional area:

$$1.2x10^{-7} \frac{g}{cm^2 \cdot \sec} \cdot p \cdot \left(\frac{1.5in}{2} \cdot \frac{2.54cm}{in}\right)^2 = 1.3x10^{-6} \frac{g}{\sec} = 0.11 \frac{g}{day}$$

Initially, the air in the tank contains the following octane:

$$35 liter \bullet 7.1 x 10^{-2} g / liter = 2.5 g$$

When the pressure drops from 30 to 29.5 in Hg, the mass of air decreases to:

$$\frac{29.5}{30} \bullet 100\% = 98.3\%$$

Therefore, about 1.7% of the air, and thus about 1.7% of the 2.5 g of octane leaves the tank, or 0.041 g.

 Can also calculate the loss due to "advective" pumping through a tank vent if the atmospheric pressure decreases from 30.0 to 29.5 in Hg. Assume that the mass of air in the tank is proportional to pressure.

1.8.2 Henry's Law Constants

- A partition coefficient describes how a chemical distributes itself between two different phases.
- The Henry's Law constant, H (or K_H), is a partition coefficient defined as the ratio of a chemical's concentration in air to its concentration in water at equilibrium.
- H can be estimated for a chemical by dividing its vapor pressure by its aqueous solubility at the same temperature.
- H generally increases with increasing temperature (vapor pressure changes more rapidly than aqueous solubility with temperature).

 H can be dimensionless (using the same concentration units for the water and air phases), in dimensionless forms, such as atm-L/mol or atm-m³/mol. Can be converted:

$$H = \frac{mol \cdot chemical/liter \cdot air}{mol \cdot chemical/liter \cdot water} \bullet R\left(\frac{liter \cdot air \bullet atm \cdot chemical}{mol \cdot chemical \bullet K}\right) \bullet T(K)$$
$$= \frac{atm \cdot chemical}{mol \cdot chemical/liter \cdot water} = \frac{atm \cdot liter}{mol}$$

1.8.3 Chemical Partitioning to Solids

- Sorption is the term used to describe the chemical partitioning between air and solid phases.
- Adsorption is when the chemical sticks to the two-dimensional surface of a solid.
- Absorption is when the chemical diffuses into a three-dimensional solid.
- Chemical sorption is much more difficult to predict than other forms of partitioning.
- Sorption can include absorption into natural organ matter; adsorption to mineral surfaces via van der Waals, dipole-dipole, and other weak physical intermolecular forces; amongst many other processes.

- Sorption isotherms (conducted at a constant temperature) are therefore used to directly measure the partitioning between water and solids.
- Laboratory data usually fitted to the Freundlich isotherm:

$$C_{sorb} = K_f \bullet (C_w)^n$$

 C_{sorb} is the concentration of the sorbed chemical [M/M] K_{f} if the Freundlich constant

C_w is the concentration of the dissolved chemical [M/L3] n reflects non-linearity:

- Laboratory tests needed to determine K_d (distribution coefficient between water and solids) for inorganic chemicals, and charged organic chemicals which sorb through chemical reactions with solid surfaces.
- For many neutral (uncharged) organic chemicals, can predict K_d assuming that the absorption is the primary sorption process. They sorb because they are nonpolar.
- Polararity refers to the extent to which the charge is unevenly distributed within a molecule or substance.

- Water is very polar, with an excess of positive charges associated with the hydrogen atoms. Most natural minerals are also polar.
- Because of water's polarity, it readily dissolves other polar (hydrophilic) chemicals.
- The nonpolar (hydrophobic) chemicals tend to avoid the less favorable state (based on free-energy considerations) of being dissolved in water by absorbing into natural organic matter.

- The polarity of a chemical has a strong inverse correlation with the chemical's K_{ow} (the octanol-water partition coefficient).
- K_{ow} is the ratio of a chemical's concentration in octanol (C₇H₁₅CH₂OH) to its concentration in water at equilibrium.
- This ratio was developed by the pharmaceutical industry to predict drug behavior in the body, the ratio mimics partitioning between water and body fat.
- Smaller molecules and more polar molecules dissolve more readily in water and have lower K_{ow} values.
- Larger molecules and less polar molecules are less soluble in water and have higher K_{ow} values.
- K_{ow} is therefore a very valuable indicator of how chemicals will behave in the environment.

Example Problem 1-14

- Partition toluene in a fish (5% fatty tissue, 3% air, 85% water, 7% nonsorptive for toluene).
- Obtain relevant partition coefficients and set up an expression in which all masses of toluene are written as functions of the volume of fish:

Mass of toluene in water of fish = $(V_{fish})(0.85)C_w$ Mass of toluene in swim bladder = $(V_{fish})(0.03)(H_{toluene} \times C_w)$ Mass of toluene in fatty tissue = $(V_{fish})(0.05)(K_{ow} \times C_w)$ • The fraction of toluene in fatty tissues can be written: $\frac{(V_{fish})(0.05)(K_{ov} \bullet C_w)}{(V_{fish})(0.05)(K_{ov} \bullet C_w) + (V_{fish})(0.03)(H_{toluene} \bullet C_w) + (V_{fish})(0.85)C_w}$ $= \frac{(0.05)(K_{ov})}{(0.05)(K_{ov}) + (0.03)(H_{toluene}) + (0.85)}$ $= \frac{(0.05)(490)}{(0.05)(490) + (0.03)(0.28) + (0.85)}$ $= \frac{(25)}{(25) + (0.008) + (0.85)} = 97\%$