"Chemical Distribution Among Phases"

Module 1: Basic Concepts, Lecture 3
Chemical Fate and Transport in the Environment, 2nd edition. H.F. Hemond and E.J. Fechner-Levy. Academic Press. London. 2000.

Examples of Pollutant Phases

- Pure air is an example of a gas phase
- Solid phases include soil grains, solid particles suspended in water or air, plus pure solid chemicals.
- Immiscible liquid (a liquid that doesn't mix freely with water) can form its own nonaqueous phase liquid (NAPL), such as an oil slick on water.
- This chapter considers only equilibrium partitioning, however, the rate of change of partitioning may be an issue for some conditions (such as the loss of volatiles from a spill of crude oil).

1.8 Multiple Phases Present in the Environment

- One medium (water, air, or soil) may contain different phases.
- Atmosphere contains gas, water, and solids.
- Surface water contains gas bubbles and particulates.
- Pollutants become distributed between different phases in each medium.

1.8.1 Solubility and Vapor Pressure

- Aqueous solubility is the concentration of a chemical dissolved in water when that water is both in contact and at equilibrium with the pure chemical.
- Aqueous solubility is temperature dependent, but does not vary greatly over typical environmental temperatures.
- As an example, TCE (trichloroethene) dissolves in water until an aqueous concentration of about $1,000 \mathrm{mg} / \mathrm{L}$ is reached.
- Vapor pressure is defined as the partial pressure of a chemical in a gas phase that is in equilibrium with the pure liquid or solid chemical.
- Temperature is very important when determining vapor pressure.
- A sealed bottle containing both air and pure liquid TCE will develop a partial pressure of TCE of about 0.08 atm at $20^{\circ} \mathrm{C}$ in the headspace. This corresponds to about $0.0033 \mathrm{~mol} / \mathrm{L}$.
- The ideal gas law is used to convert the partial pressure to the moles of vapor per unit volume:

$$
\frac{n}{V}=\frac{P}{R T}
$$

Where n / V is the number of moles of the chemical per unit volume, P is the partial pressure, T is the absolute temperature, and R is the gas constant: (0.082 liter-atm)/(mol-K).

Hemond and Fechner-Levy 2000, Table 1-3								
Comed		Dondy (0)	$\begin{aligned} & \text { Statisy } \\ & \hline \text { Inder } \end{aligned}$	$\begin{aligned} & \text { Vepor } \\ & \text { veriert } \\ & \text { Cuinit } \end{aligned}$			$\frac{14}{k}$	Camam
	sem	ter	-					
Ande 13%	nза\%	130	14*10*	1010-		12×10^{-4}	$\stackrel{*}{*}$	Nablloteial oplepi niarse Fan
Ander $12 \times$	31220	1590	$17 \times 10^{*}$	23×100	4x**	$30 \times 10 \cdot$	$6 \times$	Anekertivel Sylend minnar ran
Aners	nser		*	**10-4	3***	1x10-v	30	nvict
Drew	mit	**	100	1.0×16^{-1}	3) $\times \mathrm{m}$ -	24×184	13	$\begin{aligned} & \text { Calase } \\ & \text { sesemast } \end{aligned}$
Smajolmaxiser	13038		19**	*) 1606	\$7***	24***	ser	Nobap lis anasaik Aphacative onet
Amasideme	3238		*****	$23 \times 10-10$	128)	$40 \times 16-5$	ล*	nom
Criten iemationt	1330	130	so	ala	$23 \times 10{ }^{\text {a }}$	4.7×10^{-1}	297	
Cowntaser	mes	131	ent	10×10^{-1}	yNm	12s $\times 10^{-1}$	169	
Cowndr	17.3	10	**0	a3)	***	30×10^{-1}	(6)	
-comi	18.44		100				1*	
Crukemer		am	*	915	***	73	3**	
1,1-Diblumater	uss	1.18	*nex	$30 \times 10^{\circ} \mathrm{H}$	*xire	2.4×104	$1 \times$	
1, /-Watisutan	34.30	1.28	som	92×10^{-4}	***	+1) $\times 10^{-4}$	(4)	

Example Problem 1-12

- A 70 L fuel tank has a $2 \mathrm{ft} \times 1.5$ in D filler pipe. How much fuel is lost if the cap is left off for a day? Assume;
-Diffusion coefficient of $0.1 \mathrm{~cm}^{2} / \mathrm{sec}$
-Fuel is octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, having a molecular weight of 114
- Vapor pressure is 0.015 atm at the ambient temperature of $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$
- The fuel tank is half empty

Headspace octane concentration:

$$
\frac{n}{V}=\frac{P}{R T}=\frac{0.015 \mathrm{~atm}}{0.082 \mathrm{liter} \bullet \mathrm{~atm} /(\mathrm{mol} \bullet \mathrm{~K}) \bullet(21+273) \mathrm{K}}=6.2 \times 10^{-4} \mathrm{M}
$$

With a MW of 114, this concentration corresponds to:
$6.2 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}} \bullet 114 \frac{\mathrm{~g}}{\mathrm{~mol}} 7.1 \times 10^{-2} \frac{\mathrm{~g}}{\mathrm{~L}} \bullet \frac{L}{10^{3} \mathrm{~mL}}=7.1 \times 10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$
The concentration gradient along the filler tube is:
$\frac{d C}{d X}=\frac{\left(7.1 \times 10^{-5} \mathrm{~g} / \mathrm{cm}^{3}-0 \mathrm{~g} / \mathrm{cm}^{3}\right)}{(2 \mathrm{ft} \bullet 30.48 \mathrm{~cm} / \mathrm{ft})}=1.2 \times 10^{-6} \mathrm{~g} / \mathrm{cm}^{4}$

- Can also calculate the loss due to "advective" pumping through a tank vent if the atmospheric pressure decreases from 30.0 to 29.5 in Hg . Assume that the mass of air in the tank is proportional to pressure.

Fick's first law used to estimate flux density of octane:
$J=-D \cdot \frac{d C}{d x}=0.1 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}} \bullet 1.2 \times 10^{-6} \frac{\mathrm{~g}}{\mathrm{~cm}^{4}}$
The rate of fuel loss is the flux density multiplied by the cross-sectional area:
$1.2 \times 10^{-7} \frac{g}{\mathrm{~cm}^{2} \bullet \mathrm{sec}} \bullet \pi \bullet\left(\frac{1.5 \mathrm{in}}{2} \bullet \frac{2.54 \mathrm{~cm}}{\mathrm{in}}\right)^{2}=1.3 \times 10^{-6} \frac{\mathrm{~g}}{\mathrm{sec}}=0.11 \frac{\mathrm{~g}}{\mathrm{day}}$

Initially, the air in the tank contains the following octane:

$$
35 \text { liter } \bullet 7.1 \times 10^{-2} g / \text { liter }=2.5 g
$$

When the pressure drops from 30 to 29.5 in Hg , the mass of air decreases to:

$$
\frac{29.5}{30} \cdot 100 \%=98.3 \%
$$

Therefore, about 1.7% of the air, and thus about 1.7% of the 2.5 g of octane leaves the tank, or 0.041 g .

1.8.2 Henry's Law Constants

- A partition coefficient describes how a chemical distributes itself between two different phases.
- The Henry's Law constant, $\mathrm{H}\left(\right.$ or $\left.\mathrm{K}_{\mathrm{H}}\right)$, is a partition coefficient defined as the ratio of a chemical's concentration in air to its concentration in water at equilibrium.
- H can be estimated for a chemical by dividing its vapor pressure by its aqueous solubility at the same temperature.
- H generally increases with increasing temperature (vapor pressure changes more rapidly than aqueous solubility with temperature).

1.8.3 Chemical Partitioning to Solids

- Sorption is the term used to describe the chemical partitioning between air and solid phases.
- Adsorption is when the chemical sticks to the two-dimensional surface of a solid.
- Absorption is when the chemical diffuses into a three-dimensional solid.
- Chemical sorption is much more difficult to predict than other forms of partitioning.
- Sorption can include absorption into natural organ matter; adsorption to mineral surfaces via van der Waals, dipole-dipole, and other weak physical intermolecular forces; amongst many other processes.
- H can be dimensionless (using the same concentration units for the water and air phases), in dimensionless forms, such as $\mathrm{atm}-\mathrm{L} / \mathrm{mol}$ or $\mathrm{atm}-\mathrm{m}^{3} / \mathrm{mol}$. Can be converted:
$H=\frac{\text { mol } \cdot \text { chemicall liter } \cdot \text { air }}{\text { mol } \cdot \text { chemicall liter } \cdot \text { water }} \bullet R\left(\frac{\text { liter } \cdot \text { air } \bullet \text { atm } \cdot \text { chemical }}{\mathrm{mol} \cdot \text { chemical } \bullet K}\right) \cdot T(K)$
$=\frac{\mathrm{atm} \cdot \text { chemical }}{\mathrm{mol} \cdot \mathrm{chemicall} \text { liter } \cdot \text { water }}=\frac{\mathrm{atm} \cdot \text { liter }}{\mathrm{mol}}$
- Sorption isotherms (conducted at a constant temperature) are therefore used to directly measure the partitioning between water and solids.
- Laboratory data usually fitted to the Freundlich isotherm:

$$
C_{\text {sorb }}=K_{f} \bullet\left(C_{w}\right)^{n}
$$

$\mathrm{C}_{\text {sorb }}$ is the concentration of the sorbed chemical [M/M]
K_{f} if the Freundlich constant
C_{w} is the concentration of the dissolved chemical [M/L3]
n reflects non-linearity:

- Laboratory tests needed to determine K_{d} (distribution coefficient between water and solids) for inorganic chemicals, and charged organic chemicals which sorb through chemical reactions with solid surfaces.
- For many neutral (uncharged) organic chemicals, can predict K_{d} assuming that the absorption is the primary sorption process. They sorb because they are nonpolar.
- Polararity refers to the extent to which the charge is unevenly distributed within a molecule or substance.
- Water is very polar, with an excess of positive charges associated with the hydrogen atoms. Most natural minerals are also polar.
- Because of water's polarity, it readily dissolves other polar (hydrophilic) chemicals.
- The nonpolar (hydrophobic) chemicals tend to avoid the less favorable state (based on free-energy considerations) of being dissolved in water by absorbing into natural organic matter.

NONPOLAR	POLAR
	Cl^{-} chioride

Tatrochloroethyiane (PCL)

H^{+}

Hydrogen ien

$\begin{array}{lll}\mathrm{H} & \mathrm{H} & \mathrm{H}\end{array}$
Proponol Hemond and Fechner-Levy 2000 ,

Acalote ien

- The polarity of a chemical has a strong inverse correlation with the chemical's $\mathrm{K}_{\text {ow }}$ (the octanol-water partition coefficient).
- K_{ow} is the ratio of a chemical's concentration in octanol ($\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{CH}_{2} \mathrm{OH}$) to its concentration in water at equilibrium.
- This ratio was developed by the pharmaceutical industry to predict drug behavior in the body, the ratio mimics partitioning between water and body fat.
- Smaller molecules and more polar molecules dissolve more readily in water and have lower $\mathrm{K}_{\text {ow }}$ values.
- Larger molecules and less polar molecules are less soluble in water and have higher $\mathrm{K}_{\text {ow }}$ values.
- $\mathrm{K}_{\text {ow }}$ is therefore a very valuable indicator of how chemicals will behave in the environment.

Example Problem 1-14

- Partition toluene in a fish (5% fatty tissue, 3% air, 85% water, 7% nonsorptive for toluene).
- Obtain relevant partition coefficients and set up an expression in which all masses of toluene are written as functions of the volume of fish:

Mass of toluene in water of fish $=\left(\mathrm{V}_{\text {fish }}\right)(0.85) \mathrm{C}_{\mathrm{w}}$
Mass of toluene in swim bladder $=\left(\mathrm{V}_{\text {tish }}\right)(0.03)\left(\mathrm{H}_{\text {toluene }} \times \mathrm{C}_{\mathrm{w}}\right)$
Mass of toluene in fatty tissue $=\left(\mathrm{V}_{\text {ish }}\right)(0.05)\left(\mathrm{K}_{\mathrm{ow}} \times \mathrm{C}_{\mathrm{w}}\right)$

- The fraction of toluene in fatty tissues can be written:
$\frac{\left(V_{\text {fssh }}\right)(0.05)\left(K_{\text {ow }} \bullet C_{w}\right)}{\left(V_{\text {fish }}\right)(0.05)\left(K_{o w} \bullet C_{w}\right)+\left(V_{\text {fish }}\right)(0.03)\left(H_{\text {toluene }} \bullet C_{w}\right)+\left(V_{\text {fish }}\right)(0.85) C_{w}}$
$=\frac{(0.05)\left(K_{\text {ow }}\right)}{(0.05)\left(K_{\text {ow }}\right)+(0.03)\left(H_{\text {toluene }}\right)+(0.85)}$
$=\frac{(0.05)(490)}{(0.05)(490)+(0.03)(0.28)+(0.85)}$
$=\frac{(25)}{(25)+(0.008)+(0.85)}=97 \%$

